Module: Spice
- Defined in:
- lib/spice_utils.rb,
lib/spice/version.rb,
ext/spice.c,
ext/spice.c
Overview
This is the heart of ruby_spice.
All of the function wrappers take place here.
Constant Summary
- VERSION =
naif-spice rubygem version
"2.21"
Class Method Summary (collapse)
-
+ (nil, Fixnum) bodn2c(name)
Translate the name of a body or object to the corresponding SPICE integer ID code.
-
+ (Array<Float>) bodvcd(bodyid, item)
Fetch from the kernel pool the double precision values of an item associated with a body, where the body is specified by an integer ID code.
-
+ (nil, Array) ckgp(inst, sclkdp, tol, ref)
Get pointing (attitude) for a specified spacecraft clock time.
-
+ (Float) dpr
Return the number of degrees per radian.
-
+ (Array<(Fixnum, Fixnum, Fixnum, String, String)>) et2lst(et, body, lon, type)
Given an ephemeris epoch, compute the local solar time for an object on the surface of a body at a specified longitude.
-
+ (DateTime) et2rb(et)
Converts et into a ruby DateTime object.
-
+ (Array<Array, Array, Array>) eul2m(angle3, angle2, angle1, axis3, axis2, axis1)
Construct a rotation matrix from a set of Euler angles.
-
+ (Fixnum) furnsh(file, file...)
Load one or more SPICE kernels into a program.
-
+ (nil, Array) gdpool(name, start)
Return the d.p.
-
+ (Array<String, String, Array<Float>, Array<Array<Float, Float, Float>>>) getfov(instid)
This routine returns the field-of-view (FOV) parameters for a specified instrument.
-
+ (Array<Array<Float, Float>>) gfdist
Return the time window over which a specified constraint on observer-target distance is met.
-
+ (nil, Array<Array<Float, Float>, Array<Float, Float>>) gfoclt
Determine time intervals when an observer sees one target occulted by, or in transit across, another.
-
+ (Array<Array<Float, Float>>) gfrfov
Determine time intervals when a specified ray intersects the space bounded by the field-of-view (FOV) of a specified instrument.
-
+ (nil, Array<Array<Float, Float>>) gfsep
Determine time intervals when the angular separation between the position vectors of two target bodies relative to an observer satisfies a numerical relationship.
-
+ (nil, Array<Array<Float, Float>>) gfsntc
Determine time intervals for which a coordinate of an surface intercept position vector satisfies a numerical constraint.
-
+ (nil, Array<Array<Float, Float>>) gftfov
Determine time intervals when a specified ephemeris object intersects the space bounded by the field-of-view (FOV) of a specified instrument.
-
+ (Array<Float, Array<Float, Float, Float>, Float, Float, Float>) ilumin(method, target, et, fixref, abcorr, obsrvr, spoint)
Find the illumination angles (phase, solar incidence, and emission) at a specified surface point of a target body.
-
+ (Boolean) kclear
Clear the KEEPER system: unload all kernels, clear the kernel pool, and re-initialize the system.
-
+ (Fixnum) ktotal
Return the current number of kernels that have been loaded via the KEEPER interface that are of a specified type.
-
+ (Array<Float, Float, Float>) latrec(radius, longitude, latitude)
Convert from latitudinal coordinates to rectangular coordinates.
-
+ (Float) lspcn
Compute L_s, the planetocentric longitude of the sun, as seen from a specified body.
-
+ (Array<Float, Float, Float>) m2eul(r, axis1, axis2, axis3)
Factor a rotation matrix as a product of three rotations about specified coordinate axes.
-
+ (Array<Float, Float, Float, Float>) m2q(r)
Find the rotation matrix corresponding to a specified unit quaternion.
-
+ (Object) mxm(m1, m2)
Multiply a 3x3 double precision matrix with a 3x3 double precision matrix.
-
+ (Array<Float, Float, Float>) mxv(m1, v1)
Multiply a 3x3 double precision matrix with a 3-dimensional double precision vector.
-
+ (Array<Array<Float, Float, Float>[3]>) pxform(from, to, et)
Return the matrix that transforms position vectors from one specified frame to another at a specified epoch.
-
+ (Array<Array<Float, Float, Float>[3]>) q2m(q)
Find the rotation matrix corresponding to a specified unit quaternion.
-
+ (Array<Float, Float, Float, Float>) qxq(q1, q2)
Calculate the product of two quaternions.
-
+ (Float) rb2et(date_time)
Convert a ruby DateTime object into et.
-
+ (Array<Float, Float, Float>) reclat(rectan)
Convert from rectangular coordinates to latitudinal coordinates.
-
+ (Array<Float, Float, Float>) recrad(rectan)
Convert rectangular coordinates to range, right ascension, and declination.
-
+ (Array<Array, Array, Array>) rotate(angle, axis)
Calculate the 3x3 rotation matrix generated by a rotation of a specified angle about a specified axis.
-
+ (Float) rpd
Return the number of radians per degree.
-
+ (Float) scde2c(sc, et)
Convert ephemeris seconds past J2000 (ET) to continuous encoded spacecraft clock (`ticks').
-
+ (Float) scs2e(sc, sclkch)
Convert a spacecraft clock string to ephemeris seconds past J2000 (ET).
-
+ (Float) sctiks(sc, clkstr)
Convert a spacecraft clock format string to number of "ticks".
-
+ (nil, Array) sincpt(method, target, et, fixref, abcorr, obsrvr, dref, dvec)
Given an observer and a direction vector defining a ray, compute the surface intercept of the ray on a target body at a specified epoch, optionally corrected for light time and stellar aberration.
-
+ (Array<Array<Float, Float>>) spkcov(spk, idcode)
Find the coverage window for a specified ephemeris object in a specified SPK file.
-
+ (Array<Array<Float, Float, Float>, Float>) spkezp(targ, et, ref, abcorr, obs)
Return the position of a target body relative to an observing body, optionally corrected for light time (planetary aberration) and stellar aberration.
-
+ (Array<Array<Float, Float, Float>, Float>) spkezr(targ, et, ref, abcorr, obs)
Return the state (position and velocity) of a target body relative to an observing body, optionally corrected for light time (planetary aberration) and stellar aberration.
-
+ (Array<Float, Float, Float>, Float) spkpos(targ, et, ref, abcorr, obs)
Return the position of a target body relative to an observing body, optionally corrected for light time (planetary aberration) and stellar aberration.
-
+ (Float) str2et(time)
Convert a string representing an epoch to a double precision value representing the number of TDB seconds past the J2000 epoch corresponding to the input epoch.
-
+ (Array<Array<Float, Float, Float>, Float, Array<Float, Float, Float>>) subpnt(method, target, et, fixref, abcorr, obsrvr)
Compute the rectangular coordinates of the sub-observer point on a target body at a specified epoch, optionally corrected for light time and stellar aberration.
-
+ (Array<Array<Float, Float, Float>, Float, Array<Float, Float, Float>>) subslr(method, target, et, fixref, abcorr, obsrvr)
Compute the rectangular coordinates of the sub-solar point on a target body at a specified epoch, optionally corrected for light time and stellar aberration.
-
+ (Array<Array<Float, Float, Float, Float, Float, Float>[6]>) sxform(from, to, et)
Return the state transformation matrix from one frame to another at a specified epoch.
-
+ (Array<Float, Float, Float>) ucrss(v1, v2)
Compute the normalized cross product of two 3-vectors.
-
+ (Fixnum) unload(file, file...)
Unload a SPICE kernel.
-
+ (Array<Float, Float, Float>) vcrss(v1, v2)
Compute the cross product of two 3-dimensional vectors.
-
+ (Float) vdist(v1, v2)
Return the distance between two three-dimensional vectors.
-
+ (Float) vdot(v1, v2)
Compute the dot product of two double precision, 3-dimensional vectors.
-
+ (Float) vnorm(v1)
Compute the magnitude of a double precision, 3-dimensional vector.
-
+ (Array<Float, Float, Float>) vperp(v1, v2)
Find the component of a vector that is perpendicular to a second vector.
-
+ (Float) vsep(v1, v2)
Find the separation angle in radians between two double precision, 3-dimensional vectors.
-
+ (Array<Float, Float, Float>) vsub(v1, v2)
Compute the difference between two 3-dimensional, double precision vectors.
-
+ (Array<Array<Fixnum, Fixnum>>) wn2rb(window)
An array of window arrays [ [beg, end], [beg, end]...].
-
+ (Object) wninsd(left, right)
Insert an interval into a double precision window.
-
+ (Array<Float>, Boolean) xf2eul(xform, axisa, axisb, axisc)
Convert a state transformation matrix to Euler angles and their derivatives with respect to a specified set of axes.
Instance Method Summary (collapse)
-
- (Array) wndifd(one, two)
Takes the difference between two 'ruby spice windows'.
Class Method Details
+ (nil, Fixnum) bodn2c(name)
Translate the name of a body or object to the corresponding SPICE integer ID code.
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 |
# File 'ext/spice.c', line 743
VALUE bodn2c(int argc, VALUE *argv, VALUE self) {
SpiceBoolean found;
SpiceInt code;
if (argc != 1) {
rb_raise(rb_eArgError, "need just one arg please!");
return Qnil;
}
Check_Type(argv[0], T_STRING);
bodn2c_c(StringValuePtr(argv[0]), &code, &found);
if (found == SPICEFALSE)
return Qnil;
check_spice_error();
return INT2FIX(code);
}
|
+ (Array<Float>) bodvcd(bodyid, item)
Fetch from the kernel pool the double precision values of an item associated with a body, where the body is specified by an integer ID code.
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 |
# File 'ext/spice.c', line 1754
VALUE bodvcd(VALUE self, VALUE bodyid, VALUE item) {
double values[32];
SpiceInt vret, i;
VALUE rb_values;
Check_Type(bodyid, T_FIXNUM);
Check_Type(item, T_STRING);
bodvcd_c(NUM2INT(bodyid), StringValuePtr(item), 32, &vret, values);
rb_values = rb_ary_new2(vret);
for (i=0; i<vret; i++)
rb_ary_push(rb_values, rb_float_new(values[i]));
check_spice_error();
return rb_values;
}
|
+ (nil, Array) ckgp(inst, sclkdp, tol, ref)
Get pointing (attitude) for a specified spacecraft clock time.
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 |
# File 'ext/spice.c', line 2085
VALUE ckgp(VALUE self, VALUE inst, VALUE sclkdp, VALUE tol, VALUE ref) {
double cmat[3][3];
double slkout;
SpiceBoolean found;
Check_Type(inst, T_FIXNUM);
Check_Type(sclkdp, T_FLOAT);
Check_Type(tol, T_FLOAT);
Check_Type(ref, T_STRING);
ckgp_c(NUM2INT(inst), NUM2DBL(sclkdp), NUM2DBL(tol), StringValuePtr(ref), cmat, &slkout, &found);
if (found == SPICEFALSE) {
rb_raise(rb_eRuntimeError, "Pointing info not found for this sc time");
return Qnil;
}
check_spice_error();
return rb_ary_new3(2, rb_ary_new3(3, rb_ary_new3(3, rb_float_new(cmat[0][0]), rb_float_new(cmat[0][1]), rb_float_new(cmat[0][2])), rb_ary_new3(3, rb_float_new(cmat[1][0]), rb_float_new(cmat[1][1]), rb_float_new(cmat[1][2])), rb_ary_new3(3, rb_float_new(cmat[2][0]), rb_float_new(cmat[2][1]), rb_float_new(cmat[2][2]))), rb_float_new(slkout));
}
|
+ (Float) dpr
Return the number of degrees per radian.
337 338 339 340 341 342 343 344 |
# File 'ext/spice.c', line 337
VALUE dpr(int argc, VALUE *argv, VALUE self) {
if (argc != 0) {
rb_raise(rb_eArgError, "no args, go away!");
return Qnil;
}
return rb_float_new(dpr_c());
}
|
+ (Array<(Fixnum, Fixnum, Fixnum, String, String)>) et2lst(et, body, lon, type)
Given an ephemeris epoch, compute the local solar time for an object on the surface of a body at a specified longitude.
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
# File 'ext/spice.c', line 381
VALUE et2lst(int argc, VALUE *argv, VALUE self) {
VALUE result = Qnil;
SpiceInt timlen=32, ampmlen=32;
SpiceInt hr, mn, sc;
SpiceChar time[timlen], ampm[ampmlen];
if (argc != 4) {
rb_raise(rb_eArgError, "need 4 parameters!");
return Qnil;
}
Check_Type(argv[0], T_FLOAT); // et
Check_Type(argv[1], T_FIXNUM); // body ID-code
Check_Type(argv[2], T_FLOAT); // lon
Check_Type(argv[3], T_STRING); // type
et2lst_c(NUM2DBL(argv[0]), FIX2INT(argv[1]), NUM2DBL(argv[2]), StringValuePtr(argv[3]), timlen, ampmlen, &hr, &mn, &sc, time, ampm);
result = rb_ary_new();
rb_ary_push(result, INT2FIX(hr));
rb_ary_push(result, INT2FIX(mn));
rb_ary_push(result, INT2FIX(sc));
rb_ary_push(result, rb_str_new2(time));
rb_ary_push(result, rb_str_new2(ampm));
check_spice_error();
return result;
}
|
+ (DateTime) et2rb(et)
Converts et into a ruby DateTime object
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 |
# File 'ext/spice.c', line 771
VALUE et2rb(VALUE self, VALUE arg) {
double et;
char time_str[64];
char tmpstr[1000];
VALUE datetime;
et = NUM2DBL(arg);
et2utc_c(et, "ISOC", 3, 64, time_str);
rb_eval_string("require 'date'");
sprintf(tmpstr, "dt = DateTime.parse(\"%s\"); Time.utc(dt.year, dt.month, dt.day, dt.hour, dt.min, dt.sec, (dt.sec_fraction*(RUBY_VERSION =~ /^1\\.8\\./ ? 24*60*60 : 1)*1000000).to_i)", time_str);
datetime = rb_eval_string(tmpstr);
check_spice_error();
return datetime;
}
|
+ (Array<Array, Array, Array>) eul2m(angle3, angle2, angle1, axis3, axis2, axis1)
Construct a rotation matrix from a set of Euler angles.
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 |
# File 'ext/spice.c', line 463
VALUE eul2m(int argc, VALUE *argv, VALUE self){
double angle1, angle2, angle3;
int axis1, axis2, axis3;
int i;
double r[3][3];
if (argc != 6){
rb_raise(rb_eArgError, "Need 6 Parameters!");
return Qnil;
}
for( i = 0; i < 3; i++)
Check_Type(argv[i], T_FLOAT);
for( i = 3; i < 6; i++)
Check_Type(argv[i], T_FIXNUM);
angle3 = NUM2DBL(argv[0]);
angle2 = NUM2DBL(argv[1]);
angle1 = NUM2DBL(argv[2]);
axis3 = FIX2INT(argv[3]);
axis2 = FIX2INT(argv[4]);
axis1 = FIX2INT(argv[5]);
eul2m_c(angle3, angle2, angle1, axis3, axis2, axis1, r);
check_spice_error();
return rb_ary_new3(3, rb_ary_new3(3, rb_float_new(r[0][0]), rb_float_new(r[0][1]), rb_float_new(r[0][2])), rb_ary_new3(3, rb_float_new(r[1][0]), rb_float_new(r[1][1]), rb_float_new(r[1][2])), rb_ary_new3(3, rb_float_new(r[2][0]), rb_float_new(r[2][1]), rb_float_new(r[2][2])));
}
|
+ (Fixnum) furnsh(file, file...)
Load one or more SPICE kernels into a program.
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
# File 'ext/spice.c', line 77
VALUE furnsh(int argc, VALUE *argv, VALUE self) {
SpiceInt i;
SpiceInt numkernels;
block_signals();
if (argc == 0) {
rb_raise(rb_eArgError, "furnsh needs kernels!");
} else {
for(i=0; i < argc; i++) {
Check_Type(argv[i], T_STRING);
}
}
for(i=0; i < argc; i++) {
furnsh_c(StringValuePtr(argv[i]));
}
ktotal_c("ALL", &numkernels);
restore_signals();
check_spice_error();
return INT2FIX(numkernels);
}
|
+ (nil, Array) gdpool(name, start)
Return the d.p. value of a kernel variable from the kernel pool.
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 |
# File 'ext/spice.c', line 1786
VALUE gdpool(VALUE self, VALUE name, VALUE start) {
double values[32];
SpiceInt vret, i;
VALUE rb_values;
SpiceBoolean found;
Check_Type(name, T_STRING);
Check_Type(start, T_FIXNUM);
gdpool_c(StringValuePtr(name), NUM2INT(start), 32, &vret, values, &found);
if (found == 0) {
rb_raise(rb_eRuntimeError, "Variable not found in the pool");
return Qnil;
}
rb_values = rb_ary_new2(vret);
for (i=0; i<vret; i++)
rb_ary_push(rb_values, rb_float_new(values[i]));
check_spice_error();
return rb_values;
}
|
+ (Array<String, String, Array<Float>, Array<Array<Float, Float, Float>>>) getfov(instid)
This routine returns the field-of-view (FOV) parameters for a specified instrument.
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 |
# File 'ext/spice.c', line 983
VALUE getfov(VALUE self, VALUE arg) {
char shape[32];
char frame[32];
double bsight[3];
SpiceInt n;
double bounds[10][3];
SpiceInt i;
VALUE rb_bsight, rb_bounds;
Check_Type(arg, T_FIXNUM);
getfov_c(FIX2INT(arg), 10, 32, 32, shape, frame, bsight, &n, bounds);
rb_bsight = rb_ary_new();
for (i=0; i < 3; i++)
rb_ary_push(rb_bsight, rb_float_new(bsight[i]));
rb_bounds = rb_ary_new2(n);
for (i = 0; i < n; i++)
rb_ary_push(rb_bounds, rb_ary_new3(3, rb_float_new(bounds[i][0]), rb_float_new(bounds[i][1]), rb_float_new(bounds[i][2])));
check_spice_error();
return rb_ary_new3(4, rb_str_new2(shape), rb_str_new2(frame), rb_bsight, rb_bounds);
}
|
+ (Array<Array<Float, Float>>) gfdist(target, abcorr, obsrvr, relate, refval, adjust, step, nintvls, cnfine) + (Array<Array<Float, Float>>) gfdist(target, abcorr, obsrvr, relate, refval, adjust, step, nintvls, etstart, etstop)
Return the time window over which a specified constraint on observer-target distance is met.
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 |
# File 'ext/spice.c', line 1064
VALUE gfdist(int argc, VALUE *argv, VALUE self) {
SpiceInt i, niv;
double beg, end;
VALUE result;
SPICEDOUBLE_CELL(intv, 5000);
SPICEDOUBLE_CELL(win, 5000);
SpiceCell *ptr;
if (argc < 9 || argc > 10){
rb_raise(rb_eArgError, "need 9 parameters!");
return Qnil;
}
Check_Type(argv[0], T_STRING);/*target*/
Check_Type(argv[1], T_STRING);/*abcorr*/
Check_Type(argv[2], T_STRING);/*obsrvr*/
Check_Type(argv[3], T_STRING);/*relate*/
Check_Type(argv[4], T_FLOAT);/*refval*/
Check_Type(argv[5], T_FLOAT);/*adj*/
Check_Type(argv[6], T_FLOAT);/*step*/
Check_Type(argv[7], T_FIXNUM);/*nintvls*/
if (argc == 9){
Check_Type(argv[8], T_DATA);/*spicedouble_Cell window*/
Data_Get_Struct(argv[8], SpiceCell, ptr);
gfdist_c (StringValuePtr(argv[0]),
StringValuePtr(argv[1]),
StringValuePtr(argv[2]),
StringValuePtr(argv[3]),
NUM2DBL(argv[4]),
NUM2DBL(argv[5]),
NUM2DBL(argv[6]),
FIX2INT(argv[7]),
ptr ,
&intv );
}
else{
Check_Type(argv[8], T_FLOAT);/*start et*/
Check_Type(argv[9], T_FLOAT);/*stop et*/
wninsd_c(NUM2DBL(argv[8]), NUM2DBL(argv[9]), &win);
gfdist_c(StringValuePtr(argv[0]),
StringValuePtr(argv[1]),
StringValuePtr(argv[2]),
StringValuePtr(argv[3]),
NUM2DBL(argv[4]),
NUM2DBL(argv[5]),
NUM2DBL(argv[6]),
FIX2INT(argv[7]),
&win ,
&intv );
}
check_spice_error();
niv = wncard_c(&intv);
if (niv == 0)
return Qnil;
result = rb_ary_new2(niv);
for (i = 0; i < niv; i++) {
wnfetd_c(&intv, i, &beg, &end);
rb_ary_push(result, rb_ary_new3(2, INT2FIX(beg), INT2FIX(end)));
}
return result;
}
|
+ (nil, Array<Array<Float, Float>, Array<Float, Float>>) gfoclt(occtyp, front, fshape, fframe, back, bshape, bframe, abcorr, obsrvr, step, cnfine) + (nil, Array<Array<Float, Float>, Array<Float, Float>>) gfoclt(occtyp, front, fshape, fframe, back, bshape, bframe, abcorr, obsrvr, step, startet, stopet)
Determine time intervals when an observer sees one target occulted by, or in transit across, another.
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 |
# File 'ext/spice.c', line 2206
VALUE gfoclt(int argc, VALUE* argv, VALUE self) {
SPICEDOUBLE_CELL (result, 5000);
SpiceInt i, niv;
double beg, end;
VALUE rb_result;
SpiceCell *cnfine;
SPICEDOUBLE_CELL(win, 5000);
if (argc < 11 || argc > 12){
rb_raise(rb_eArgError, "need 11 parameters!");
return Qnil;
}
Check_Type(argv[0], T_STRING); /*occtyp*/
Check_Type(argv[1], T_STRING); /*front*/
Check_Type(argv[2], T_STRING); /*fshape*/
Check_Type(argv[3], T_STRING); /*fframe*/
Check_Type(argv[4], T_STRING); /*back*/
Check_Type(argv[5], T_STRING); /*bshape*/
Check_Type(argv[6], T_STRING); /*bframe*/
Check_Type(argv[7], T_STRING); /*abcorr*/
Check_Type(argv[8], T_STRING); /*obsrvr*/
Check_Type(argv[9], T_FLOAT); /*step*/
if (argc == 11){
Check_Type(argv[10],T_DATA); /*cnfine*/
Data_Get_Struct(argv[10], SpiceCell, cnfine);
gfoclt_c( StringValuePtr(argv[0]),
StringValuePtr(argv[1]),
StringValuePtr(argv[2]),
StringValuePtr(argv[3]),
StringValuePtr(argv[4]),
StringValuePtr(argv[5]),
StringValuePtr(argv[6]),
StringValuePtr(argv[7]),
StringValuePtr(argv[8]),
NUM2DBL(argv[9]),
cnfine,
&result);
}
else{
Check_Type(argv[10], T_FLOAT);/*start et*/
Check_Type(argv[11], T_FLOAT);/*stop et*/
wninsd_c(NUM2DBL(argv[10]), NUM2DBL(argv[11]), &win);
gfoclt_c( StringValuePtr(argv[0]),
StringValuePtr(argv[1]),
StringValuePtr(argv[2]),
StringValuePtr(argv[3]),
StringValuePtr(argv[4]),
StringValuePtr(argv[5]),
StringValuePtr(argv[6]),
StringValuePtr(argv[7]),
StringValuePtr(argv[8]),
NUM2DBL(argv[9]),
&win,
&result);
}
check_spice_error();
niv = wncard_c(&result);
if (niv == 0)
return Qnil;
rb_result = rb_ary_new2(niv);
for (i = 0; i < niv; i++) {
wnfetd_c(&result, i, &beg, &end);
rb_ary_push(rb_result, rb_ary_new3(2, INT2FIX(beg), INT2FIX(end)));
}
return rb_result;
}
|
+ (Array<Array<Float, Float>>) gfrfov(inst, raydir, rframe, abcorr, obsrvr, step, cnfine) + (Array<Array<Float, Float>>) gfrfov(inst, raydir, rframe, abcorr, obsrvr, step, etstart, etstop)
Determine time intervals when a specified ray intersects the space bounded by the field-of-view (FOV) of a specified instrument.
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 |
# File 'ext/spice.c', line 1529
VALUE gfrfov(int argc, VALUE *argv, VALUE self){
SpiceInt i, niv;
double beg, end, ray[3];
VALUE result;
SPICEDOUBLE_CELL(intv, 5000);
SPICEDOUBLE_CELL(win, 5000);
SpiceCell *ptr;
if (argc < 7 || argc > 8){
rb_raise(rb_eArgError, "need 7 parameters!");
return Qnil;
}
Check_Type(argv[0], T_STRING);/*inst*/
Check_Type(argv[1], T_ARRAY);/*raydir double[3]*/
Check_Type(argv[2], T_STRING);/*rframe*/
Check_Type(argv[3], T_STRING);/*abcorr*/
Check_Type(argv[4], T_STRING);/*obsvr*/
Check_Type(argv[5], T_FLOAT);/*step*/
for (i=0; i < 3; i++) {
Check_Type(RARRAY_PTR(argv[1])[i], T_FLOAT);
ray[i] = NUM2DBL(RARRAY_PTR(argv[1])[i]);
}
if (argc == 7){
Check_Type(argv[6], T_DATA);/*cnfine*/
Data_Get_Struct(argv[6], SpiceCell, ptr);
gfrfov_c(StringValuePtr(argv[0]),
ray,
StringValuePtr(argv[2]),
StringValuePtr(argv[3]),
StringValuePtr(argv[4]),
NUM2DBL(argv[5]),
ptr,
&intv);
}
else{
Check_Type(argv[6], T_FLOAT);/*start et*/
Check_Type(argv[7], T_FLOAT);/*stop et*/
wninsd_c(NUM2DBL(argv[6]), NUM2DBL(argv[7]), &win);
gfrfov_c(StringValuePtr(argv[0]),
ray,
StringValuePtr(argv[2]),
StringValuePtr(argv[3]),
StringValuePtr(argv[4]),
NUM2DBL(argv[5]),
&win,
&intv);
}
check_spice_error();
niv = wncard_c(&intv);
if (niv == 0)
return Qnil;
result = rb_ary_new2(niv);
for (i = 0; i < niv; i++){
wnfetd_c(&intv, i, &beg, &end);
rb_ary_push(result, rb_ary_new3(2, INT2FIX(beg), INT2FIX(end)));
}
return result;
}
|
+ (nil, Array<Array<Float, Float>>) gfsep(targ1, shape1, frame1, targ2, shape2, frame2, abcorr, obsrvr, relate, refval, adjust, step, nintvls, cnfine) + (nil, Array<Array<Float, Float>>) gfsep(targ1, shape1, frame1, targ2, shape2, frame2, abcorr, obsrvr, relate, refval, adjust, step, nintvls, start_et, stop_et)
Determine time intervals when the angular separation between the position vectors of two target bodies relative to an observer satisfies a numerical relationship.
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 |
# File 'ext/spice.c', line 1311
VALUE gfsep(int argc, VALUE *argv, VALUE self) {
SpiceInt i, niv;
double beg, end;
VALUE result;
SPICEDOUBLE_CELL(intv, 5000);
SpiceCell *ptr;
SPICEDOUBLE_CELL(win, 5000);
if (argc < 14 || argc >> 15){
rb_raise(rb_eArgError, "need 14 parameters!");
return Qnil;
}
Check_Type(argv[0], T_STRING);/*target1*/
Check_Type(argv[1], T_STRING);/*shape1*/
Check_Type(argv[2], T_STRING);/*frame1*/
Check_Type(argv[3], T_STRING);/*targ2*/
Check_Type(argv[4], T_STRING);/*shape2*/
Check_Type(argv[5], T_STRING);/*frame2*/
Check_Type(argv[6], T_STRING);/*abcorr*/
Check_Type(argv[7], T_STRING);/*obsvr*/
Check_Type(argv[8], T_STRING);/*relate*/
Check_Type(argv[9], T_FLOAT);/*refval*/
Check_Type(argv[10], T_FLOAT);/*adjust*/
Check_Type(argv[11], T_FLOAT);/*step*/
Check_Type(argv[12], T_FIXNUM);/*nintvls*/
if (argc == 14){
Check_Type(argv[13], T_DATA);/*cfnine*/
Data_Get_Struct(argv[13], SpiceCell, ptr);
gfsep_c(StringValuePtr(argv[0]),
StringValuePtr(argv[1]),
StringValuePtr(argv[2]),
StringValuePtr(argv[3]),
StringValuePtr(argv[4]),
StringValuePtr(argv[5]),
StringValuePtr(argv[6]),
StringValuePtr(argv[7]),
StringValuePtr(argv[8]),
NUM2DBL(argv[9]),
NUM2DBL(argv[10]),
NUM2DBL(argv[11]),
FIX2INT(argv[12]),
ptr,
&intv);
}
else{
Check_Type(argv[13], T_FLOAT);/*start et*/
Check_Type(argv[14], T_FLOAT);/*stop et*/
wninsd_c(NUM2DBL(argv[13]), NUM2DBL(argv[14]), &win);
gfsep_c(StringValuePtr(argv[0]),
StringValuePtr(argv[1]),
StringValuePtr(argv[2]),
StringValuePtr(argv[3]),
StringValuePtr(argv[4]),
StringValuePtr(argv[5]),
StringValuePtr(argv[6]),
StringValuePtr(argv[7]),
StringValuePtr(argv[8]),
NUM2DBL(argv[9]),
NUM2DBL(argv[10]),
NUM2DBL(argv[11]),
FIX2INT(argv[12]),
&win,
&intv);
}
check_spice_error();
niv = wncard_c(&intv);
if (niv == 0)
return Qnil;
result = rb_ary_new2(niv);
for (i = 0; i < niv; i++){
wnfetd_c(&intv, i, &beg, &end);
rb_ary_push(result, rb_ary_new3(2, INT2FIX(beg), INT2FIX(end)));
}
return result;
}
|
+ (nil, Array<Array<Float, Float>>) gfsntc(target, fixref, method, abcorr, obsrvr, dref, dvec, crdsys, coord, relate, retval, adjust, step, nintvls, cnfine) + (nil, Array<Array<Float, Float>>) gfsntc(target, fixref, method, abcorr, obsrvr, dref, dvec, crdsys, coord, relate, retval, adjust, step, nintvls, start_et, end_et)
Determine time intervals for which a coordinate of an surface intercept position vector satisfies a numerical constraint.
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 |
# File 'ext/spice.c', line 1184
VALUE gfsntc(int argc, VALUE *argv, VALUE self) {
double dvec[3];
SpiceInt i, niv;
double beg, end;
VALUE result;
SPICEDOUBLE_CELL(intv, 5000);
SPICEDOUBLE_CELL(win, 5000);
SpiceCell *ptr;
if (argc < 15 || argc > 16){
rb_raise(rb_eArgError, "need 15 parameters!");
return Qnil;
}
Check_Type(argv[0], T_STRING);/*target*/
Check_Type(argv[1], T_STRING);/*fixref*/
Check_Type(argv[2], T_STRING);/*method*/
Check_Type(argv[3], T_STRING);/*abcorr*/
Check_Type(argv[4], T_STRING);/*obsrvr*/
Check_Type(argv[5], T_STRING);/*dref*/
Check_Type(argv[6], T_ARRAY); /*dvec*/
Check_Type(argv[7], T_STRING);/*crdsys*/
Check_Type(argv[8], T_STRING);/*coord*/
Check_Type(argv[9], T_STRING);/*relate*/
Check_Type(argv[10], T_FLOAT); /*refval*/
Check_Type(argv[11], T_FLOAT); /*adjust*/
Check_Type(argv[12], T_FLOAT); /*step*/
Check_Type(argv[13], T_FIXNUM);/*nintvls*/
for (i=0; i < 3; i++){
Check_Type(RARRAY_PTR(argv[6])[i], T_FLOAT);
dvec[i] = NUM2DBL(RARRAY_PTR(argv[6])[i]);
}
if (argc == 15){
Check_Type(argv[14], T_DATA);/*spicedouble_Cell window*/
Data_Get_Struct(argv[14], SpiceCell, ptr);
gfsntc_c(StringValuePtr(argv[0]),
StringValuePtr(argv[1]),
StringValuePtr(argv[2]),
StringValuePtr(argv[3]),
StringValuePtr(argv[4]),
StringValuePtr(argv[5]),
dvec,
StringValuePtr(argv[7]),
StringValuePtr(argv[8]),
StringValuePtr(argv[9]),
NUM2DBL(argv[10]),
NUM2DBL(argv[11]),
NUM2DBL(argv[12]),
FIX2INT(argv[13]),
ptr,
&intv);
}
else {
Check_Type(argv[14], T_FLOAT);/*start et*/
Check_Type(argv[15], T_FLOAT);/*stop et*/
wninsd_c(NUM2DBL(argv[14]), NUM2DBL(argv[15]), &win);
gfsntc_c ( StringValuePtr(argv[0]),
StringValuePtr(argv[1]),
StringValuePtr(argv[2]),
StringValuePtr(argv[3]),
StringValuePtr(argv[4]),
StringValuePtr(argv[5]),
dvec,
StringValuePtr(argv[7]),
StringValuePtr(argv[8]),
StringValuePtr(argv[9]),
NUM2DBL(argv[10]),
NUM2DBL(argv[11]),
NUM2DBL(argv[12]),
FIX2INT(argv[13]),
&win,
&intv);
}
check_spice_error();
niv = wncard_c(&intv);
if (niv == 0)
return Qnil;
result = rb_ary_new2(niv);
for (i = 0; i < niv; i++) {
wnfetd_c(&intv, i, &beg, &end);
rb_ary_push(result, rb_ary_new3(2, rb_float_new(beg), rb_float_new(end)));
}
return result;
}
|
+ (nil, Array<Array<Float, Float>>) gftfov(inst, target, tshape, tframe, abcorr, obsrvr, step, cnfine) + (nil, Array<Array<Float, Float>>) gftfov(inst, target, tshape, tframe, abcorr, obsrvr, step, etstart, etstop)
Determine time intervals when a specified ephemeris object intersects the space bounded by the field-of-view (FOV) of a specified instrument.
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 |
# File 'ext/spice.c', line 1435
VALUE gftfov(int argc, VALUE *argv, VALUE self) {
SpiceInt i, niv;
double beg, end;
SpiceCell *ptr;
VALUE result;
SPICEDOUBLE_CELL(intv, 5000);
SPICEDOUBLE_CELL(win, 5000);
if (argc < 8 || argc > 9){
rb_raise(rb_eArgError, "need 8 parameters!");
return Qnil;
}
Check_Type(argv[0], T_STRING);/*inst*/
Check_Type(argv[1], T_STRING);/*target*/
Check_Type(argv[2], T_STRING);/*tshape*/
Check_Type(argv[3], T_STRING);/*tframe*/
Check_Type(argv[4], T_STRING);/*abcorr*/
Check_Type(argv[5], T_STRING);/*obsvr*/
Check_Type(argv[6], T_FLOAT);/*step*/
if (argc == 8){
Check_Type(argv[7], T_DATA);/*cnfine*/
Data_Get_Struct(argv[7], SpiceCell, ptr);
gftfov_c ( StringValuePtr(argv[0]),
StringValuePtr(argv[1]),
StringValuePtr(argv[2]),
StringValuePtr(argv[3]),
StringValuePtr(argv[4]),
StringValuePtr(argv[5]),
NUM2DBL(argv[6]),
ptr,
&intv );
}
else{
Check_Type(argv[7], T_FLOAT);/*start et*/
Check_Type(argv[8], T_FLOAT);/*stop et*/
wninsd_c(NUM2DBL(argv[7]), NUM2DBL(argv[8]), &win);
gftfov_c ( StringValuePtr(argv[0]),
StringValuePtr(argv[1]),
StringValuePtr(argv[2]),
StringValuePtr(argv[3]),
StringValuePtr(argv[4]),
StringValuePtr(argv[5]),
NUM2DBL(argv[6]),
&win,
&intv );
}
check_spice_error();
niv = wncard_c(&intv);
if (niv == 0)
return Qnil;
result = rb_ary_new2(niv);
for (i = 0; i < niv; i++){
wnfetd_c(&intv, i, &beg, &end);
rb_ary_push(result, rb_ary_new3(2, INT2FIX(beg), INT2FIX(end)));
}
return result;
}
|
+ (Array<Float, Array<Float, Float, Float>, Float, Float, Float>) ilumin(method, target, et, fixref, abcorr, obsrvr, spoint)
Find the illumination angles (phase, solar incidence, and emission) at a specified surface point of a target body.
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 |
# File 'ext/spice.c', line 607
VALUE ilumin(int argc, VALUE *argv, VALUE self) {
double spoint[3];
double trgepc;
double srfvec[3];
double phase, solar, emissn;
VALUE rb_srfvec;
SpiceInt i;
if (argc != 7) {
rb_raise(rb_eArgError, "need 7 parameters!");
return Qnil;
}
Check_Type(argv[0], T_STRING);
Check_Type(argv[1], T_STRING);
Check_Type(argv[2], T_FLOAT);
Check_Type(argv[3], T_STRING);
Check_Type(argv[4], T_STRING);
Check_Type(argv[5], T_STRING);
Check_Type(argv[6], T_ARRAY);
if (RARRAY_LEN(argv[6]) != 3) {
rb_raise(rb_eArgError, "The array should have 3 items in it");
return Qnil;
}
for (i=0; i < 3; i++) {
Check_Type(RARRAY_PTR(argv[6])[i], T_FLOAT);
spoint[i] = NUM2DBL(RARRAY_PTR(argv[6])[i]);
}
ilumin_c(StringValuePtr(argv[0]), StringValuePtr(argv[1]), NUM2DBL(argv[2]), StringValuePtr(argv[3]), StringValuePtr(argv[4]), StringValuePtr(argv[5]), spoint, &trgepc, srfvec, &phase, &solar, &emissn);
rb_srfvec = rb_ary_new();
for (i=0; i < 3; i++)
rb_ary_push(rb_srfvec, rb_float_new(srfvec[i]));
check_spice_error();
return rb_ary_new3(5, rb_float_new(trgepc), rb_srfvec, rb_float_new(phase), rb_float_new(solar), rb_float_new(emissn));
}
|
+ (Boolean) kclear
Clear the KEEPER system: unload all kernels, clear the kernel pool, and re-initialize the system.
151 152 153 154 155 156 157 158 |
# File 'ext/spice.c', line 151 VALUE kclear(VALUE self) { VALUE result = Qtrue; kclear_c(); check_spice_error(); return result; } |
+ (Fixnum) ktotal
Return the current number of kernels that have been loaded via the KEEPER interface that are of a specified type.
170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
# File 'ext/spice.c', line 170
VALUE ktotal(int argc, VALUE *argv, VALUE self) {
VALUE result = Qnil;
SpiceInt numkernels;
if (argc > 0) {
rb_raise(rb_eArgError, "no parameters here");
return result;
}
ktotal_c("ALL", &numkernels);
check_spice_error();
return INT2FIX(numkernels);
}
|
+ (Array<Float, Float, Float>) latrec(radius, longitude, latitude)
Convert from latitudinal coordinates to rectangular coordinates.
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 |
# File 'ext/spice.c', line 1864
VALUE latrec(VALUE self, VALUE radius, VALUE lon, VALUE lat) {
double spoint[3];
Check_Type(radius, T_FLOAT);
Check_Type(lon, T_FLOAT);
Check_Type(lat, T_FLOAT);
latrec_c(NUM2DBL(radius), NUM2DBL(lon), NUM2DBL(lat), spoint);
check_spice_error();
return rb_ary_new3(3, rb_float_new(spoint[0]), rb_float_new(spoint[1]), rb_float_new(spoint[2]));
}
|
+ (Float) lspcn
Compute L_s, the planetocentric longitude of the sun, as seen from a specified body.
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 |
# File 'ext/spice.c', line 1824
VALUE lspcn(VALUE self, VALUE body, VALUE et, VALUE abcorr) {
SpiceDouble res;
Check_Type(body, T_STRING);
Check_Type(et, T_FLOAT);
Check_Type(abcorr, T_STRING);
res = lspcn_c(StringValuePtr(body), NUM2DBL(et), StringValuePtr(abcorr));
check_spice_error();
return rb_float_new(res);
}
|
+ (Array<Float, Float, Float>) m2eul(r, axis1, axis2, axis3)
Factor a rotation matrix as a product of three rotations about specified coordinate axes.
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 |
# File 'ext/spice.c', line 2356
VALUE m2eul(VALUE self, VALUE rb_r, VALUE rb_axis3, VALUE rb_axis2, VALUE rb_axis1) {
double r[3][3];
SpiceDouble angle3, angle2, angle1;
SpiceInt i, j;
if (RARRAY_LEN(rb_r) != 3) {
rb_raise(rb_eArgError, "R should be 3x3");
return Qnil;
}
for(i=0; i<3; i++) {
if (RARRAY_LEN(RARRAY_PTR(rb_r)[i]) !=3) {
rb_raise(rb_eArgError, "R should be 3x3");
return Qnil;
}
for (j=0; j<3; j++) {
Check_Type(RARRAY_PTR(RARRAY_PTR(rb_r)[i])[j], T_FLOAT);
r[i][j] = NUM2DBL(RARRAY_PTR(RARRAY_PTR(rb_r)[i])[j]);
}
}
m2eul_c((const double(*)[3])r, NUM2INT(rb_axis3), NUM2INT(rb_axis2), NUM2INT(rb_axis1), &angle3, &angle2, &angle1);
check_spice_error();
return rb_ary_new3(3, rb_float_new(angle3), rb_float_new(angle2), rb_float_new(angle1));
}
|
+ (Array<Float, Float, Float, Float>) m2q(r)
Find the rotation matrix corresponding to a specified unit quaternion.
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 |
# File 'ext/spice.c', line 2397
VALUE m2q(int argc, VALUE *argv, VALUE self){
double r[3][3];
double q[4];
int i, j;
if (argc != 1) {
rb_raise(rb_eArgError, "Need 1 parameter!");
return Qnil;
}
Check_Type(argv[0], T_ARRAY);
if (RARRAY_LEN(argv[0]) != 3) {
rb_raise(rb_eArgError, "r should be 3x3");
return Qnil;
}
for(i=0; i<3; i++) {
if (RARRAY_LEN(RARRAY_PTR(argv[0])[i]) !=3) {
rb_raise(rb_eArgError, "r should be 3x3");
return Qnil;
}
for (j=0; j<3; j++) {
Check_Type(RARRAY_PTR(RARRAY_PTR(argv[0])[i])[j], T_FLOAT);
r[i][j] = NUM2DBL(RARRAY_PTR(RARRAY_PTR(argv[0])[i])[j]);
}
}
m2q_c((const double(*)[3])r, q);
check_spice_error();
return rb_ary_new3(4, rb_float_new(q[0]), rb_float_new(q[1]), rb_float_new(q[2]), rb_float_new(q[3]));
}
|
+ (Object) mxm(m1, m2)
Multiply a 3x3 double precision matrix with a 3x3 double precision matrix
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 |
# File 'ext/spice.c', line 2500
VALUE mxm(int argc, VALUE *argv, VALUE self){
double m1[3][3];
double m2[3][3];
double mout[3][3];
SpiceInt i, j;
block_signals();
if (argc != 2) {
rb_raise(rb_eArgError, "Needs 2 parameters!");
return Qnil;
}
if (RARRAY_LEN(argv[0]) != 3 || RARRAY_LEN(argv[1]) != 3) {
rb_raise(rb_eArgError, "M1 and M2 should be 3x3");
return Qnil;
}
for(i = 0; i < 3; i++) {
if (RARRAY_LEN(RARRAY_PTR(argv[0])[i]) != 3 || RARRAY_LEN(RARRAY_PTR(argv[1])[i]) != 3) {
rb_raise(rb_eArgError, "M1 and M2 should be 3x3.");
return Qnil;
}
for(j = 0; j < 3; j++) {
Check_Type(RARRAY_PTR(RARRAY_PTR(argv[0])[i])[j], T_FLOAT);
m1[i][j] = NUM2DBL(RARRAY_PTR(RARRAY_PTR(argv[0])[i])[j]);
Check_Type(RARRAY_PTR(RARRAY_PTR(argv[1])[i])[j], T_FLOAT);
m2[i][j] = NUM2DBL(RARRAY_PTR(RARRAY_PTR(argv[1])[i])[j]);
}
}
mxm_c((const double(*)[3])m1, (const double(*)[3])m2, (double(*)[3])mout);
restore_signals();
check_spice_error();
return rb_ary_new3(3, rb_ary_new3(3, rb_float_new(mout[0][0]), rb_float_new(mout[0][1]), rb_float_new(mout[0][2])), rb_ary_new3(3, rb_float_new(mout[1][0]), rb_float_new(mout[1][1]), rb_float_new(mout[1][2])), rb_ary_new3(3, rb_float_new(mout[2][0]), rb_float_new(mout[2][1]), rb_float_new(mout[2][2])));
}
|
+ (Array<Float, Float, Float>) mxv(m1, v1)
Multiply a 3x3 double precision matrix with a 3-dimensional double precision vector.
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 |
# File 'ext/spice.c', line 2123
VALUE mxv(VALUE self, VALUE rb_m1, VALUE rb_v1) {
double v2[3];
double v1[3];
double m1[3][3];
SpiceInt i, j;
if (RARRAY_LEN(rb_v1) != 3) {
rb_raise(rb_eArgError, "V1 should have 3 items in it");
return Qnil;
}
if (RARRAY_LEN(rb_m1) != 3) {
rb_raise(rb_eArgError, "M1 should be 3x3");
return Qnil;
}
for(i = 0; i < 3; i++) {
Check_Type(RARRAY_PTR(rb_v1)[i], T_FLOAT);
v1[i] = NUM2DBL(RARRAY_PTR(rb_v1)[i]);
if (RARRAY_LEN(RARRAY_PTR(rb_m1)[i]) != 3) {
rb_raise(rb_eArgError, "M1 should be 3x3.");
return Qnil;
}
for(j = 0; j < 3; j++) {
Check_Type(RARRAY_PTR(RARRAY_PTR(rb_m1)[i])[j], T_FLOAT);
m1[i][j] = NUM2DBL(RARRAY_PTR(RARRAY_PTR(rb_m1)[i])[j]);
}
}
mxv_c((const double(*)[3])m1, v1, v2);
check_spice_error();
return rb_ary_new3(3, rb_float_new(v2[0]), rb_float_new(v2[1]), rb_float_new(v2[2]));
}
|
+ (Array<Array<Float, Float, Float>[3]>) pxform(from, to, et)
Return the matrix that transforms position vectors from one specified frame to another at a specified epoch.
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 |
# File 'ext/spice.c', line 2635
VALUE pxform(VALUE self, VALUE from, VALUE to, VALUE et) {
double cmat[3][3];
Check_Type(from, T_STRING);
Check_Type(to, T_STRING);
Check_Type(et, T_FLOAT);
pxform_c(StringValuePtr(from), StringValuePtr(to), NUM2DBL(et), cmat);
check_spice_error();
return rb_ary_new3(3, rb_ary_new3(3, rb_float_new(cmat[0][0]), rb_float_new(cmat[0][1]), rb_float_new(cmat[0][2])), rb_ary_new3(3, rb_float_new(cmat[1][0]), rb_float_new(cmat[1][1]), rb_float_new(cmat[1][2])), rb_ary_new3(3, rb_float_new(cmat[2][0]), rb_float_new(cmat[2][1]), rb_float_new(cmat[2][2])));
}
|
+ (Array<Array<Float, Float, Float>[3]>) q2m(q)
Find the rotation matrix corresponding to a specified unit quaternion.
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 |
# File 'ext/spice.c', line 2663
VALUE q2m(int argc, VALUE *argv, VALUE self){
double q[4];
double r[3][3];
int i;
if (argc != 1) {
rb_raise(rb_eArgError, "Need 1 parameter!");
return Qnil;
}
Check_Type(argv[0], T_ARRAY);
for (i=0; i < 4; i++){
Check_Type(RARRAY_PTR(argv[0])[i], T_FLOAT);
q[i] = NUM2DBL(RARRAY_PTR(argv[0])[i]);
}
q2m_c(q, r);
check_spice_error();
return rb_ary_new3(3, rb_ary_new3(3, rb_float_new(r[0][0]), rb_float_new(r[0][1]), rb_float_new(r[0][2])), rb_ary_new3(3, rb_float_new(r[1][0]), rb_float_new(r[1][1]), rb_float_new(r[1][2])), rb_ary_new3(3, rb_float_new(r[2][0]), rb_float_new(r[2][1]), rb_float_new(r[2][2])));
}
|
+ (Array<Float, Float, Float, Float>) qxq(q1, q2)
Calculate the product of two quaternions.
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 |
# File 'ext/spice.c', line 2445
VALUE qxq(int argc, VALUE *argv, VALUE self){
double q1[4];
double q2[4];
double qout[4];
int i;
block_signals();
if (argc != 2) {
rb_raise(rb_eArgError, "Needs 2 parameters!");
return Qnil;
}
if (RARRAY_LEN(argv[0]) != 4 || RARRAY_LEN(argv[1]) != 4) {
rb_raise(rb_eArgError, "q1 and q2 should be 4 element arrays");
return Qnil;
}
Check_Type(argv[0], T_ARRAY);
Check_Type(argv[1], T_ARRAY);
for( i = 0; i < 4; i++) {
Check_Type(RARRAY_PTR(argv[0])[i], T_FLOAT);
q1[i] = NUM2DBL(RARRAY_PTR(argv[0])[i]);
Check_Type(RARRAY_PTR(argv[1])[i], T_FLOAT);
q2[i] = NUM2DBL(RARRAY_PTR(argv[1])[i]);
}
qxq_c(q1, q2, qout);
restore_signals();
check_spice_error();
return rb_ary_new3(4, rb_float_new(qout[0]), rb_float_new(qout[1]), rb_float_new(qout[2]), rb_float_new(qout[3]));
}
|
+ (Float) rb2et(date_time)
Convert a ruby DateTime object into et
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 |
# File 'ext/spice.c', line 798
VALUE rb2et(VALUE self, VALUE arg) {
double et;
VALUE rb_tmp1, rb_tmp2;
int usec;
char tmpstr[1000];
usec = FIX2INT(rb_funcall(arg, rb_intern("usec"), 0));
rb_tmp1 = rb_funcall(arg, rb_intern("utc"), 0);
rb_tmp2 = rb_funcall(rb_tmp1, rb_intern("strftime"), 1, rb_str_new2("%Y-%m-%dT%H:%M:%S"));
sprintf(tmpstr, "%s.%06d", StringValuePtr(rb_tmp2), usec);
str2et_c(tmpstr, &et);
check_spice_error();
return rb_float_new(et);
}
|
+ (Array<Float, Float, Float>) reclat(rectan)
Convert from rectangular coordinates to latitudinal coordinates.
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
# File 'ext/spice.c', line 296
VALUE reclat(int argc, VALUE* argv, VALUE self) {
double spoint[3];
SpiceInt i;
double radius, lon, lat;
if (argc != 1) {
rb_raise(rb_eArgError, "Need just 1 parameter");
return Qnil;
}
Check_Type(argv[0], T_ARRAY);
if (RARRAY_LEN(argv[0]) != 3) {
rb_raise(rb_eArgError, "The array should have 3 items in it");
return Qnil;
}
for (i=0; i < 3; i++) {
Check_Type(RARRAY_PTR(argv[0])[i], T_FLOAT);
spoint[i] = NUM2DBL(RARRAY_PTR(argv[0])[i]);
}
reclat_c(spoint, &radius, &lon, &lat);
check_spice_error();
return rb_ary_new3(3, rb_float_new(radius), rb_float_new(lon), rb_float_new(lat));
}
|
+ (Array<Float, Float, Float>) recrad(rectan)
Convert rectangular coordinates to range, right ascension, and declination.
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 |
# File 'ext/spice.c', line 2702
VALUE recrad(int argc, VALUE* argv, VALUE self) {
double spoint[3];
SpiceInt i;
double range, ra, dec;
if (argc != 1) {
rb_raise(rb_eArgError, "Need just 1 parameter");
return Qnil;
}
Check_Type(argv[0], T_ARRAY);
if (RARRAY_LEN(argv[0]) != 3) {
rb_raise(rb_eArgError, "The array should have 3 items in it");
return Qnil;
}
for (i=0; i < 3; i++) {
Check_Type(RARRAY_PTR(argv[0])[i], T_FLOAT);
spoint[i] = NUM2DBL(RARRAY_PTR(argv[0])[i]);
}
recrad_c(spoint, &range, &ra, &dec);
check_spice_error();
return rb_ary_new3(3, rb_float_new(range), rb_float_new(ra), rb_float_new(dec));
}
|
+ (Array<Array, Array, Array>) rotate(angle, axis)
Calculate the 3x3 rotation matrix generated by a rotation of a specified angle about a specified axis. This rotation is thought of as rotating the coordinate system.
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
# File 'ext/spice.c', line 426
VALUE rotate(int argc, VALUE *argv, VALUE self){
double angle;
int axis;
double mout[3][3];
if (argc != 2){
rb_raise(rb_eArgError, "Need 2 Parameters!");
return Qnil;
}
Check_Type(argv[0], T_FLOAT);
Check_Type(argv[1], T_FIXNUM);
angle = NUM2DBL(argv[0]);
axis = FIX2INT(argv[1]);
rotate_c(angle, axis, mout);
check_spice_error();
return rb_ary_new3(3, rb_ary_new3(3, rb_float_new(mout[0][0]), rb_float_new(mout[0][1]), rb_float_new(mout[0][2])), rb_ary_new3(3, rb_float_new(mout[1][0]), rb_float_new(mout[1][1]), rb_float_new(mout[1][2])), rb_ary_new3(3, rb_float_new(mout[2][0]), rb_float_new(mout[2][1]), rb_float_new(mout[2][2])));
}
|
+ (Float) rpd
Return the number of radians per degree.
1847 1848 1849 |
# File 'ext/spice.c', line 1847 VALUE rpd(VALUE self) { return rb_float_new(rpd_c()); } |
+ (Float) scde2c(sc, et)
Convert ephemeris seconds past J2000 (ET) to continuous encoded spacecraft clock (`ticks'). Non-integral tick values may be returned.
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 |
# File 'ext/spice.c', line 2554
VALUE sce2c(VALUE self, VALUE sc, VALUE et) {
double sctk;
Check_Type(sc, T_FIXNUM);
Check_Type(et, T_FLOAT);
sce2c_c(NUM2INT(sc), NUM2DBL(et), &sctk);
check_spice_error();
return rb_float_new(sctk);
}
|
+ (Float) scs2e(sc, sclkch)
Convert a spacecraft clock string to ephemeris seconds past J2000 (ET).
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 |
# File 'ext/spice.c', line 2577
VALUE scs2e(VALUE self, VALUE sc, VALUE sclk) {
double et;
Check_Type(sc, T_FIXNUM);
Check_Type(sclk, T_STRING);
scs2e_c(NUM2INT(sc), StringValuePtr(sclk), &et);
check_spice_error();
return rb_float_new(et);
}
|
+ (Float) sctiks(sc, clkstr)
Convert a spacecraft clock format string to number of "ticks".
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 |
# File 'ext/spice.c', line 2023
VALUE sctiks(VALUE self, VALUE sc, VALUE slkstr) {
double ticks;
Check_Type(sc, T_FIXNUM);
Check_Type(slkstr, T_STRING);
sctiks_c(NUM2INT(sc), StringValuePtr(slkstr), &ticks);
check_spice_error();
return rb_float_new(ticks);
}
|
+ (nil, Array) sincpt(method, target, et, fixref, abcorr, obsrvr, dref, dvec)
Given an observer and a direction vector defining a ray, compute the surface intercept of the ray on a target body at a specified epoch, optionally corrected for light time and stellar aberration.
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 |
# File 'ext/spice.c', line 915
VALUE sincpt(int argc, VALUE *argv, VALUE self) {
double spoint[3] = {0.0,0.0,0.0};
double trgepc;
double srfvec[3];
double dvec[3];
SpiceBoolean found;
VALUE rb_srfvec, rb_spoint;
SpiceInt i;
if (argc != 8) {
rb_raise(rb_eArgError, "need 7 parameters!");
return Qnil;
}
Check_Type(argv[0], T_STRING);
Check_Type(argv[1], T_STRING);
Check_Type(argv[2], T_FLOAT);
Check_Type(argv[3], T_STRING);
Check_Type(argv[4], T_STRING);
Check_Type(argv[5], T_STRING);
Check_Type(argv[6], T_STRING);
Check_Type(argv[7], T_ARRAY);
if (RARRAY_LEN(argv[7]) != 3) {
rb_raise(rb_eArgError, "The array should have 3 items in it");
return Qnil;
}
for (i=0; i < 3; i++) {
Check_Type(RARRAY_PTR(argv[7])[i], T_FLOAT);
dvec[i] = NUM2DBL(RARRAY_PTR(argv[7])[i]);
}
sincpt_c(StringValuePtr(argv[0]), StringValuePtr(argv[1]), NUM2DBL(argv[2]), StringValuePtr(argv[3]), StringValuePtr(argv[4]), StringValuePtr(argv[5]), StringValuePtr(argv[6]), dvec, spoint, &trgepc, srfvec, &found);
if (found == 0) {
rb_raise(rb_eRuntimeError, "Intercept point not found");
return Qnil;
}
rb_spoint = rb_ary_new();
for (i=0; i < 3; i++)
rb_ary_push(rb_spoint, rb_float_new(spoint[i]));
rb_srfvec = rb_ary_new();
for (i=0; i < 3; i++)
rb_ary_push(rb_srfvec, rb_float_new(srfvec[i]));
check_spice_error();
return rb_ary_new3(3, rb_spoint, rb_float_new(trgepc), rb_srfvec);
}
|
+ (Array<Array<Float, Float>>) spkcov(spk, idcode)
Find the coverage window for a specified ephemeris object in a specified SPK file.
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 |
# File 'ext/spice.c', line 665
VALUE spkcov(int argc, VALUE *argv, VALUE self) {
SPICEDOUBLE_CELL (cover, 2000);
SpiceInt i;
SpiceInt niv;
double b, e;
VALUE result;
if (argc != 2) {
rb_raise(rb_eArgError, "We need two args!");
return Qnil;
}
if (TYPE(argv[0]) != T_STRING && TYPE(argv[0]) != T_ARRAY) {
rb_raise(rb_eArgError, "gimme some spks!");
return Qnil;
}
Check_Type(argv[1], T_FIXNUM);
scard_c(0, &cover);
if (TYPE(argv[0]) == T_STRING) {
spkcov_c(StringValuePtr(argv[0]), FIX2INT(argv[1]), &cover);
} else {
for (i=0; i < RARRAY_LEN(argv[0]); i++)
spkcov_c(StringValuePtr(RARRAY_PTR(argv[0])[i]), FIX2INT(argv[1]), &cover);
}
niv = wncard_c(&cover);
if (niv == 0)
return Qnil;
result = rb_ary_new2(niv);
for (i = 0; i < niv; i++) {
wnfetd_c(&cover, i, &b, &e);
printf("%f %f\n",b, e);
rb_ary_push(result, rb_ary_new3(2, INT2FIX(b), INT2FIX(e)));
}
/*build up an array of arrays with start/end time pairs*/
check_spice_error();
return result;
}
|
+ (Array<Array<Float, Float, Float>, Float>) spkezp(targ, et, ref, abcorr, obs)
Return the position of a target body relative to an observing body, optionally corrected for light time (planetary aberration) and stellar aberration.
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 |
# File 'ext/spice.c', line 1619
VALUE spkezp(int argc, VALUE *argv, VALUE self) {
double ptarg[3] = {0.0,0.0,0.0};
double lt;
VALUE rb_ptarg;
SpiceInt i;
if (argc != 5) {
rb_raise(rb_eArgError, "need 5 parameters!");
return Qnil;
}
Check_Type(argv[0], T_FIXNUM);
Check_Type(argv[1], T_FLOAT);
Check_Type(argv[2], T_STRING);
Check_Type(argv[3], T_STRING);
Check_Type(argv[4], T_FIXNUM);
spkezp_c(FIX2INT(argv[0]), NUM2DBL(argv[1]), StringValuePtr(argv[2]), StringValuePtr(argv[3]), FIX2INT(argv[4]), ptarg, <);
rb_ptarg = rb_ary_new();
for (i=0; i < 3; i++)
rb_ary_push(rb_ptarg, rb_float_new(ptarg[i]));
check_spice_error();
return rb_ary_new3(2, rb_ptarg, rb_float_new(lt));
}
|
+ (Array<Array<Float, Float, Float>, Float>) spkezr(targ, et, ref, abcorr, obs)
Return the state (position and velocity) of a target body relative to an observing body, optionally corrected for light time (planetary aberration) and stellar aberration.
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 |
# File 'ext/spice.c', line 1665
VALUE spkezr(int argc, VALUE *argv, VALUE self) {
double starg[6] = {0.0,0.0,0.0,0.0,0.0,0.0};
double lt;
VALUE rb_starg;
SpiceInt i;
if (argc != 5) {
rb_raise(rb_eArgError, "need 5 parameters!");
return Qnil;
}
Check_Type(argv[0], T_STRING);
Check_Type(argv[1], T_FLOAT);
Check_Type(argv[2], T_STRING);
Check_Type(argv[3], T_STRING);
Check_Type(argv[4], T_STRING);
spkezr_c(StringValuePtr(argv[0]), NUM2DBL(argv[1]), StringValuePtr(argv[2]), StringValuePtr(argv[3]), StringValuePtr(argv[4]), starg, <);
rb_starg = rb_ary_new();
for (i=0; i < 6; i++)
rb_ary_push(rb_starg, rb_float_new(starg[i]));
check_spice_error();
return rb_ary_new3(2, rb_starg, rb_float_new(lt));
}
|
+ (Array<Float, Float, Float>, Float) spkpos(targ, et, ref, abcorr, obs)
Return the position of a target body relative to an observing body, optionally corrected for light time (planetary aberration) and stellar aberration.
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 |
# File 'ext/spice.c', line 2749
VALUE spkpos(VALUE self, VALUE rb_targ, VALUE rb_et, VALUE rb_ref, VALUE rb_abcorr, VALUE rb_obs) {
SpiceDouble ptarg[3], lt;
Check_Type(rb_targ, T_STRING);
Check_Type(rb_et, T_FLOAT);
Check_Type(rb_ref, T_STRING);
Check_Type(rb_abcorr, T_STRING);
Check_Type(rb_obs, T_STRING);
spkpos_c(StringValuePtr(rb_targ), NUM2DBL(rb_et), StringValuePtr(rb_ref), StringValuePtr(rb_abcorr), StringValuePtr(rb_obs), ptarg, <);
check_spice_error();
return rb_ary_new3(2, rb_ary_new3(3, rb_float_new(ptarg[0]), rb_float_new(ptarg[1]), rb_float_new(ptarg[2])), rb_float_new(lt));
}
|
+ (Float) str2et(time)
Convert a string representing an epoch to a double precision value representing the number of TDB seconds past the J2000 epoch corresponding to the input epoch.
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
# File 'ext/spice.c', line 196
VALUE str2et(int argc, VALUE *argv, VALUE self) {
double et;
if (argc != 1) {
rb_raise(rb_eArgError, "need one parameter, the time string");
return Qnil;
}
Check_Type(argv[0], T_STRING);
str2et_c(StringValuePtr(argv[0]), &et);
check_spice_error();
return rb_float_new(et);
}
|
+ (Array<Array<Float, Float, Float>, Float, Array<Float, Float, Float>>) subpnt(method, target, et, fixref, abcorr, obsrvr)
Compute the rectangular coordinates of the sub-observer point on a target body at a specified epoch, optionally corrected for light time and stellar aberration.
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
# File 'ext/spice.c', line 240
VALUE subpnt(int argc, VALUE *argv, VALUE self) {
VALUE result = Qnil;
double spoint[3];
double trgepc;
double srfvec[3];
VALUE rb_spoint, rb_srfvec;
SpiceInt i;
if (argc != 6) {
rb_raise(rb_eArgError, "need 6 parameters!");
return Qnil;
}
Check_Type(argv[0], T_STRING);
Check_Type(argv[1], T_STRING);
Check_Type(argv[2], T_FLOAT);
Check_Type(argv[3], T_STRING);
Check_Type(argv[4], T_STRING);
Check_Type(argv[5], T_STRING);
subpnt_c(StringValuePtr(argv[0]), StringValuePtr(argv[1]), NUM2DBL(argv[2]), StringValuePtr(argv[3]), StringValuePtr(argv[4]), StringValuePtr(argv[5]), spoint, &trgepc, srfvec);
rb_spoint = rb_ary_new();
for (i=0; i < 3; i++)
rb_ary_push(rb_spoint, rb_float_new(spoint[i]));
rb_srfvec = rb_ary_new();
for (i=0; i < 3; i++)
rb_ary_push(rb_srfvec, rb_float_new(srfvec[i]));
result = rb_ary_new();
rb_ary_push(result, rb_spoint);
rb_ary_push(result, rb_float_new(trgepc));
rb_ary_push(result, rb_srfvec);
check_spice_error();
return result;
}
|
+ (Array<Array<Float, Float, Float>, Float, Array<Float, Float, Float>>) subslr(method, target, et, fixref, abcorr, obsrvr)
Compute the rectangular coordinates of the sub-solar point on a target body at a specified epoch, optionally corrected for light time and stellar aberration.
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 |
# File 'ext/spice.c', line 845
VALUE subslr(int argc, VALUE *argv, VALUE self) {
VALUE result = Qnil;
double spoint[3];
double trgepc;
double srfvec[3];
VALUE rb_spoint, rb_srfvec;
SpiceInt i;
if (argc != 6) {
rb_raise(rb_eArgError, "need 6 parameters!");
return Qnil;
}
Check_Type(argv[0], T_STRING);
Check_Type(argv[1], T_STRING);
Check_Type(argv[2], T_FLOAT);
Check_Type(argv[3], T_STRING);
Check_Type(argv[4], T_STRING);
Check_Type(argv[5], T_STRING);
subslr_c(StringValuePtr(argv[0]), StringValuePtr(argv[1]), NUM2DBL(argv[2]), StringValuePtr(argv[3]), StringValuePtr(argv[4]), StringValuePtr(argv[5]), spoint, &trgepc, srfvec);
rb_spoint = rb_ary_new();
for (i=0; i < 3; i++)
rb_ary_push(rb_spoint, rb_float_new(spoint[i]));
rb_srfvec = rb_ary_new();
for (i=0; i < 3; i++)
rb_ary_push(rb_srfvec, rb_float_new(srfvec[i]));
result = rb_ary_new();
rb_ary_push(result, rb_spoint);
rb_ary_push(result, rb_float_new(trgepc));
rb_ary_push(result, rb_srfvec);
check_spice_error();
return result;
}
|
+ (Array<Array<Float, Float, Float, Float, Float, Float>[6]>) sxform(from, to, et)
Return the state transformation matrix from one frame to another at a specified epoch.
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 |
# File 'ext/spice.c', line 2603
VALUE sxform(VALUE self, VALUE from, VALUE to, VALUE et) {
double cmat[6][6];
Check_Type(from, T_STRING);
Check_Type(to, T_STRING);
Check_Type(et, T_FLOAT);
sxform_c(StringValuePtr(from), StringValuePtr(to), NUM2DBL(et), cmat);
check_spice_error();
return rb_ary_new3(6, rb_ary_new3(6, rb_float_new(cmat[0][0]), rb_float_new(cmat[0][1]), rb_float_new(cmat[0][2]), rb_float_new(cmat[0][3]), rb_float_new(cmat[0][4]), rb_float_new(cmat[0][5])),
rb_ary_new3(6, rb_float_new(cmat[1][0]), rb_float_new(cmat[1][1]), rb_float_new(cmat[1][2]), rb_float_new(cmat[1][3]), rb_float_new(cmat[1][4]), rb_float_new(cmat[1][5])),
rb_ary_new3(6, rb_float_new(cmat[2][0]), rb_float_new(cmat[2][1]), rb_float_new(cmat[2][2]), rb_float_new(cmat[2][3]), rb_float_new(cmat[2][4]), rb_float_new(cmat[2][5])),
rb_ary_new3(6, rb_float_new(cmat[3][0]), rb_float_new(cmat[3][1]), rb_float_new(cmat[3][2]), rb_float_new(cmat[3][3]), rb_float_new(cmat[3][4]), rb_float_new(cmat[3][5])),
rb_ary_new3(6, rb_float_new(cmat[4][0]), rb_float_new(cmat[4][1]), rb_float_new(cmat[4][2]), rb_float_new(cmat[4][3]), rb_float_new(cmat[4][4]), rb_float_new(cmat[4][5])),
rb_ary_new3(6, rb_float_new(cmat[5][0]), rb_float_new(cmat[5][1]), rb_float_new(cmat[5][2]), rb_float_new(cmat[5][3]), rb_float_new(cmat[5][4]), rb_float_new(cmat[5][5])));
}
|
+ (Array<Float, Float, Float>) ucrss(v1, v2)
Compute the normalized cross product of two 3-vectors.
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 |
# File 'ext/spice.c', line 1927
VALUE ucrss(VALUE self, VALUE rb_v1, VALUE rb_v2) {
double v1[3], v2[3], vd[3];
SpiceInt i;
Check_Type(rb_v1, T_ARRAY);
Check_Type(rb_v2, T_ARRAY);
for(i = 0; i < 3; i++) {
Check_Type(RARRAY_PTR(rb_v1)[i], T_FLOAT);
Check_Type(RARRAY_PTR(rb_v2)[i], T_FLOAT);
v1[i] = NUM2DBL(RARRAY_PTR(rb_v1)[i]);
v2[i] = NUM2DBL(RARRAY_PTR(rb_v2)[i]);
}
ucrss_c(v1, v2, vd);
check_spice_error();
return rb_ary_new3(3, rb_float_new(vd[0]), rb_float_new(vd[1]), rb_float_new(vd[2]));
}
|
+ (Fixnum) unload(file, file...)
Unload a SPICE kernel
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
# File 'ext/spice.c', line 114
VALUE unload(int argc, VALUE *argv, VALUE self) {
SpiceInt i;
SpiceInt numkernels;
block_signals();
if (argc == 0) {
rb_raise(rb_eArgError, "unload needs kernels!");
} else {
for(i=0; i < argc; i++) {
Check_Type(argv[i], T_STRING);
}
}
for(i=0; i < argc; i++) {
unload_c(StringValuePtr(argv[i]));
}
ktotal_c("ALL", &numkernels);
restore_signals();
check_spice_error();
return INT2FIX(numkernels);
}
|
+ (Array<Float, Float, Float>) vcrss(v1, v2)
Compute the cross product of two 3-dimensional vectors.
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 |
# File 'ext/spice.c', line 1961
VALUE vcrss(VALUE self, VALUE rb_v1, VALUE rb_v2) {
double v1[3], v2[3], vd[3];
SpiceInt i;
Check_Type(rb_v1, T_ARRAY);
Check_Type(rb_v2, T_ARRAY);
for(i = 0; i < 3; i++) {
Check_Type(RARRAY_PTR(rb_v1)[i], T_FLOAT);
Check_Type(RARRAY_PTR(rb_v2)[i], T_FLOAT);
v1[i] = NUM2DBL(RARRAY_PTR(rb_v1)[i]);
v2[i] = NUM2DBL(RARRAY_PTR(rb_v2)[i]);
}
vcrss_c(v1, v2, vd);
check_spice_error();
return rb_ary_new3(3, rb_float_new(vd[0]), rb_float_new(vd[1]), rb_float_new(vd[2]));
}
|
+ (Float) vdist(v1, v2)
Return the distance between two three-dimensional vectors.
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 |
# File 'ext/spice.c', line 1705
VALUE vdist(VALUE self, VALUE v1, VALUE v2) {
double vec1[3], vec2[3], res;
SpiceInt i;
Check_Type(v1, T_ARRAY);
Check_Type(v2, T_ARRAY);
if (RARRAY_LEN(v1) != 3) {
rb_raise(rb_eArgError, "The array should have 3 items in it");
return Qnil;
}
if (RARRAY_LEN(v2) != 3) {
rb_raise(rb_eArgError, "The array should have 3 items in it");
return Qnil;
}
for (i=0; i < 3; i++) {
Check_Type(RARRAY_PTR(v1)[i], T_FLOAT);
vec1[i] = NUM2DBL(RARRAY_PTR(v1)[i]);
}
for (i=0; i < 3; i++) {
Check_Type(RARRAY_PTR(v2)[i], T_FLOAT);
vec2[i] = NUM2DBL(RARRAY_PTR(v2)[i]);
}
res = vdist_c(vec1, vec2);
check_spice_error();
return rb_float_new(res);
}
|
+ (Float) vdot(v1, v2)
Compute the dot product of two double precision, 3-dimensional vectors.
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 |
# File 'ext/spice.c', line 1992
VALUE vdot(VALUE self, VALUE rb_v1, VALUE rb_v2) {
double v1[3], v2[3], res;
SpiceInt i;
Check_Type(rb_v1, T_ARRAY);
Check_Type(rb_v2, T_ARRAY);
for(i = 0; i < 3; i++) {
Check_Type(RARRAY_PTR(rb_v1)[i], T_FLOAT);
Check_Type(RARRAY_PTR(rb_v2)[i], T_FLOAT);
v1[i] = NUM2DBL(RARRAY_PTR(rb_v1)[i]);
v2[i] = NUM2DBL(RARRAY_PTR(rb_v2)[i]);
}
res = vdot_c(v1, v2);
check_spice_error();
return rb_float_new(res);
}
|
+ (Float) vnorm(v1)
Compute the magnitude of a double precision, 3-dimensional vector.
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 |
# File 'ext/spice.c', line 507
VALUE vnorm(int argc, VALUE *argv, VALUE self) {
double srfvec[3], res;
SpiceInt i;
if (argc != 1) {
rb_raise(rb_eArgError, "Need just 1 parameter");
return Qnil;
}
Check_Type(argv[0], T_ARRAY);
if (RARRAY_LEN(argv[0]) != 3) {
rb_raise(rb_eArgError, "The array should have 3 items in it");
return Qnil;
}
for (i=0; i < 3; i++) {
Check_Type(RARRAY_PTR(argv[0])[i], T_FLOAT);
srfvec[i] = NUM2DBL(RARRAY_PTR(argv[0])[i]);
}
res = vnorm_c(srfvec);
check_spice_error();
return rb_float_new(res);
}
|
+ (Array<Float, Float, Float>) vperp(v1, v2)
Find the component of a vector that is perpendicular to a second vector.
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 |
# File 'ext/spice.c', line 548
VALUE vperp(VALUE self, VALUE v1, VALUE v2) {
double vec1[3], vec2[3], result[3];
SpiceInt i;
Check_Type(v1, T_ARRAY);
Check_Type(v2, T_ARRAY);
if (RARRAY_LEN(v1) != 3) {
rb_raise(rb_eArgError, "The array should have 3 items in it");
return Qnil;
}
if (RARRAY_LEN(v2) != 3) {
rb_raise(rb_eArgError, "The array should have 3 items in it");
return Qnil;
}
for (i=0; i < 3; i++) {
Check_Type(RARRAY_PTR(v1)[i], T_FLOAT);
vec1[i] = NUM2DBL(RARRAY_PTR(v1)[i]);
}
for (i=0; i < 3; i++) {
Check_Type(RARRAY_PTR(v2)[i], T_FLOAT);
vec2[i] = NUM2DBL(RARRAY_PTR(v2)[i]);
}
vperp_c(vec1, vec2, result);
check_spice_error();
return rb_ary_new3(3, rb_float_new(result[0]), rb_float_new(result[1]), rb_float_new(result[2]));
}
|
+ (Float) vsep(v1, v2)
Find the separation angle in radians between two double precision, 3-dimensional vectors. This angle is defined as zero if either vector is zero.
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 |
# File 'ext/spice.c', line 2050
VALUE vsep(VALUE self, VALUE rb_v1, VALUE rb_v2) {
double v1[3], v2[3], res;
SpiceInt i;
Check_Type(rb_v1, T_ARRAY);
Check_Type(rb_v2, T_ARRAY);
for(i = 0; i < 3; i++) {
Check_Type(RARRAY_PTR(rb_v1)[i], T_FLOAT);
Check_Type(RARRAY_PTR(rb_v2)[i], T_FLOAT);
v1[i] = NUM2DBL(RARRAY_PTR(rb_v1)[i]);
v2[i] = NUM2DBL(RARRAY_PTR(rb_v2)[i]);
}
res = vsep_c(v1, v2);
check_spice_error();
return rb_float_new(res);
}
|
+ (Array<Float, Float, Float>) vsub(v1, v2)
Compute the difference between two 3-dimensional, double precision vectors.
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 |
# File 'ext/spice.c', line 1892
VALUE vsub(VALUE self, VALUE rb_v1, VALUE rb_v2) {
double v1[3], v2[3], vd[3];
SpiceInt i;
Check_Type(rb_v1, T_ARRAY);
Check_Type(rb_v2, T_ARRAY);
for(i = 0; i < 3; i++) {
Check_Type(RARRAY_PTR(rb_v1)[i], T_FLOAT);
Check_Type(RARRAY_PTR(rb_v2)[i], T_FLOAT);
v1[i] = NUM2DBL(RARRAY_PTR(rb_v1)[i]);
v2[i] = NUM2DBL(RARRAY_PTR(rb_v2)[i]);
}
vsub_c(v1, v2, vd);
check_spice_error();
return rb_ary_new3(3, rb_float_new(vd[0]), rb_float_new(vd[1]), rb_float_new(vd[2]));
}
|
+ (Array<Array<Fixnum, Fixnum>>) wn2rb(window)
Returns An array of window arrays [ [beg, end], [beg, end]…]
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 |
# File 'ext/spice.c', line 2848
VALUE wn2rb (VALUE self, VALUE window) {
int niv, i;
VALUE result;
double beg, end;
SpiceCell *ptr;
Check_Type(window, T_DATA);
Data_Get_Struct(window, SpiceCell, ptr);
niv = wncard_c(ptr);
if (niv == 0)
return Qnil;
result = rb_ary_new2(niv);
for (i = 0; i < niv; i++){
wnfetd_c(ptr, i, &beg, &end);
rb_ary_push(result, rb_ary_new3(2, INT2FIX(beg), INT2FIX(end)));
}
return result;
}
|
+ (Object) wninsd(left, right)
Insert an interval into a double precision window.
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 |
# File 'ext/spice.c', line 2781
VALUE wninsd (int argc, VALUE *argv, VALUE self) {
VALUE rb_window;
VALUE class = 0;
SpiceCell *ptr = 0;
SPICEDOUBLE_CELL (window, 5000);
if (argc < 2 || argc > 3){
rb_raise(rb_eArgError, "need 2 parameters!");
return Qnil;
}
/* !!!!!! Not ready to lose this bit incase we decide to rework
* !!!!!! Window handling at a later date to work on osX
* !!!!!! This sets up a usable SpiceDouble Cell without using
* !!!!!! the NAIF marcos, which do some invisible magic
* !!!!!! alicht@ser.asu.edu
* //The extra 6's in here are defined in Spice_cel.h they
* //they are used to hold "spice cell control parameters
* //In the case of DP cells, the only one set is [4], it's
* //set to the size of the cell minus the ctrl size (ie 5006 - 6 = 5000)
* SpiceCell *window = malloc(sizeof(SpiceCell));
* SpiceDouble windowArr[5006];
* memset(windowArr, 0, 5006);
*
* windowArr[4] = 5000;
* window->dtype = SPICE_DP;
* window->length = 0;
* window->size = 5000;
* window->card = SPICETRUE;
* window->isSet = SPICEFALSE;
* window->adjust = SPICEFALSE;
* window->base = (void *)windowArr;
* window->data = (void *)(&((SpiceDouble *) window->base)[6]);
*/
Check_Type(argv[0], T_FLOAT);
Check_Type(argv[1], T_FLOAT);
if ( argc == 3) {
Check_Type(argv[2], T_DATA);
Data_Get_Struct(argv[2], SpiceCell, ptr);
wninsd_c( NUM2DBL(argv[0]), NUM2DBL(argv[1]), ptr);
}
wninsd_c( NUM2DBL(argv[0]), NUM2DBL(argv[1]), &window );
check_spice_error();
/*
*A spice cell is just a struct full of primitive types wrapped
*around an array of the spice_type, an array of doubles in this
*case
*/
if (argc == 2)
rb_window = Data_Wrap_Struct(class, 0, 0, &window);
else
rb_window = Data_Wrap_Struct(class, 0, 0, ptr);
return rb_window;
}
|
+ (Array<Float>, Boolean) xf2eul(xform, axisa, axisb, axisc)
Convert a state transformation matrix to Euler angles and their derivatives with respect to a specified set of axes.
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 |
# File 'ext/spice.c', line 2303
VALUE xf2eul(VALUE self, VALUE rb_cmat, VALUE rb_axisa, VALUE rb_axisb, VALUE rb_axisc) {
double cmat[6][6];
double eulang[6];
SpiceBoolean unique;
SpiceInt i, j;
VALUE rb_unique;
if (RARRAY_LEN(rb_cmat) != 6) {
rb_raise(rb_eArgError, "cmat should be 6x6");
return Qnil;
}
for(i = 0; i < 6; i++) {
if (RARRAY_LEN(RARRAY_PTR(rb_cmat)[i]) != 6) {
rb_raise(rb_eArgError, "cmat should be 6x6.");
return Qnil;
}
for(j = 0; j < 6; j++) {
Check_Type(RARRAY_PTR(RARRAY_PTR(rb_cmat)[i])[j], T_FLOAT);
cmat[i][j] = NUM2DBL(RARRAY_PTR(RARRAY_PTR(rb_cmat)[i])[j]);
}
}
xf2eul_c((const double(*)[6])cmat, NUM2INT(rb_axisa), NUM2INT(rb_axisb), NUM2INT(rb_axisc), eulang, &unique);
check_spice_error();
if (unique == SPICETRUE)
rb_unique = Qtrue;
else
rb_unique = Qfalse;
return rb_ary_new3(2, rb_ary_new3(6, rb_float_new(eulang[0]), rb_float_new(eulang[1]), rb_float_new(eulang[2]), rb_float_new(eulang[3]), rb_float_new(eulang[4]), rb_float_new(eulang[5])), rb_unique);
}
|
Instance Method Details
- (Array) wndifd(one, two)
Takes the difference between two 'ruby spice windows'
cspice functions which return spice windows return a 2d array of windows in ruby spice
that is: [[beg, end], ... , [beg, end]]
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
# File 'lib/spice_utils.rb', line 142 def wndifd one,two unless (one.kind_of?(Array) and two.kind_of?(Array)) raise ArgumentError end return one if two.length == 0 return [] if one.length == 0 ret = [] result = [] one.each do |a| a_rng = (a[0]..a[1]) #first r = a_rng.intersection(0..two[0][0]) ret << r unless r.nil? (0...two.size-1).each do |b| r = a_rng.intersection(two[b][1]..two[b+1][0]) ret << r unless r.nil? end r = a_rng.intersection(two.last.last..a[1]) #last ret << r unless r.nil? end ret.each {|range| result << [range.begin, range.end]} result end |